Stay connected with us on X, Discord, and LinkedIn to stay up to date with future analysis
All MicroEvals
Voice AI agent pricing calculator
Create MicroEval
Header image for Voice AI agent pricing calculator

Voice AI agent pricing calculator

Create voice agent pricing calculator by Nikhil. R

Prompt

Create a comprehensive voice AI pricing calculator website with the following features: **Main Calculator Section:** - Header: "VOICE AGENT PRICING CALCULATOR" with subtitle "Calculate the total cost and latency of running voice AI conversations" - Three dropdown selectors for: - LLM Provider (GPT-4o OpenAI, Claude, etc.) - STT Provider (GPT-4o-Transcribe OpenAI, Deepgram, etc.) - TTS Provider (Sonic English Cartesia, ElevenLabs, etc.) **Input Parameters Panel:** - Conversation Length (15 min default) - Agents Per vCPU (1 default) - Words Per Minute (100 default) - Tokens Per Word (1.3 default) - Characters/Word (6 default) - Turns Per Minute (4 default) - LLM Speech Ratio (0.5 default) **Current Pricing Display:** - Transcription Cost/Min: $0.006 - LLM Input Token Cost: $0.0000025000 - LLM Output Token Cost: $0.0000100000 - Voice Cost/Character: $0.000038 - vCPU Cost/Minute: $0.00007083333 **Results Section:** - Large total cost display: "$0.4205" - Cost per minute: "$0.0280" - Warning: "Final prices might be higher!" - Breakdown pie chart showing: Transcription ($0.0900), LLM ($0.1584), Voice ($0.1710), Hosting ($0.0011) - Token counts: Input Tokens (59,475), Output Tokens (975) - Export CSV and social share buttons Make it responsive, modern design with clean typography and intuitive UX. Add a comprehensive latency breakdown section to the voice AI calculator: **Latency Visualization:** - Total Voice-to-Voice Latency: 993ms with color-coded performance indicator - Fast (<800ms) - Green - Acceptable (800-1000ms) - Yellow - Slow (>1000ms) - Red **Three-Stage Breakdown with Progress Bars:** **Input Path (114ms):** - Mic Input: 40ms - Opus Encoding: 21ms - Network Transit: 10ms - Packet Handling: 2ms - Jitter Buffer: 40ms - Opus Decoding: 1ms **AI Processing (790ms):** - Transcription & Endpointing: 300ms - LLM Inference: 350ms - Sentence Aggregation: 20ms - Text-to-Speech: 120ms **Output Path (89ms):** - Opus Encoding: 21ms - Packet Handling: 2ms - Network Transit: 10ms - Jitter Buffer: 40ms - Opus Decoding: 1ms - Speaker Output: 15ms Include explanatory text about voice-to-voice latency and its importance for conversational AI. Add comprehensive formula documentation explaining all calculations: **FORMULA DOCUMENTATION Section:** **Cost Formulas:** - LLM Input Tokens: (words_per_min * tokens_per_word / turns_per_min) * (turns_per_min * convo_length) * (turns_per_min * convo_length + 1) / 2 - LLM Output Tokens: words_per_min * tokens_per_word * llm_speech_ratio * convo_length - Transcription Cost: transcription_cost_per_min * convo_length - LLM Cost: (input_tokens * input_cost) + (output_tokens * output_cost) - Voice Cost: voice_cost * words_per_min * chars_per_word * (1 - llm_speech_ratio) * convo_length - Hosting Cost: (vcpu_cost * convo_length) / agents_per_vcpu - Total Cost: transcription_cost + llm_cost + voice_cost + hosting_cost **Latency Formula:** Total Voice-to-Voice Latency = mic_input + opus_encoding + network + packet_handling + jitter_buffer + opus_decoding + transcription + llm_ttfb + sentence_aggregation + tts_ttfb + opus_encoding + packet_handling + network + jitter_buffer + opus_decoding + speaker_output Include clear explanations for each formula component and real-time calculation updates.

A system prompt was added to support web rendering

Drag to resize
Drag to resize
Drag to resize
Drag to resize
Drag to resize
Drag to resize